Existence of solutions for a nonhomogeneous Dirichlet problem involving $p(x)$-Laplacian operator and indefinite weight
نویسندگان
چکیده
منابع مشابه
Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
متن کاملexistence of three solutions for the dirichlet problem involving the p-laplacian and minimax inequality for relevant functionals
in this paper, we establish some results on the existence of at least three weak solutions for adirichlet problem involving p-laplacian using a variational approach.
متن کاملExistence of weak solutions for a p-Laplacian problem involving Dirichlet boundary condition
Keywords: Dirichlet boundary value problem p-Laplacian Topological degree theory Critical point theory Weak solution a b s t r a c t In this work, by virtue of topological degree theory and critical point theory, we are mainly concerned with the existence of weak solutions for a Dirichlet boundary value problem with the p-Laplacian operator.
متن کاملExistence of three positive solutions for nonsmooth functional involving the p-biharmonic operator
This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...
متن کاملExistence and nonexistence of solutions for a singular p-Laplacian Dirichlet problem
We study the existence of positive radially symmetric solution for the singular pLaplacian Dirichlet problem, − △p u = λ|u| p−2u − γu where λ > 0, γ > 0 and, 0 < α < 1, are parameters and Ω, the domain of the equation, is a ball in R . By using some variational methods we show that, if λ is contained in some interval, then the problem has a radially symmetric positive solution on the ball. More...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2019
ISSN: 1687-2770
DOI: 10.1186/s13661-019-1276-z